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PROACTIVE SECRET SHARINGOr:How to Cope With Perpetual LeakageAmir Herzberg Stanis law Jarecki� Hugo KrawczykMoti YungIBM T.J. Watson Research CenterYorktown Heights, NY 10598famir,stasio,hugo,motig@watson.ibm.comOctober 15, 1998AbstractSecret sharing schemes protect secrets by distributing them over di�erent locations(share holders). In particular, in k out of n threshold schemes, security is assured ifthroughout the entire life-time of the secret the adversary is restricted to compromiseless than k of the n locations. For long-lived and sensitive secrets this protection maybe insu�cient.We propose an e�cient proactive secret sharing scheme, where shares are periodi-cally renewed (without changing the secret) in such a way that information gained bythe adversary in one time period is useless for attacking the secret after the sharesare renewed. Hence, the adversary willing to learn the secret needs to break to all klocations during the same time period (e.g., one day, a week, etc.). Furthermore, in or-der to guarantee the availability and integrity of the secret, we provide mechanisms todetect maliciously (or accidentally) corrupted shares, as well as mechanisms to secretlyrecover the correct shares when modi�cation is detected.1 IntroductionSecret sharing schemes protect the secrecy and integrity of information by distributing theinformation over di�erent locations. For sensitive data these schemes constitute a funda-�Massachusetts Institute of Technology 1
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mental protection tool, forcing the adversary to attack multiple locations in order to learnor destroy the information. In particular, in a (k + 1; n)-threshold scheme, an adversaryneeds to compromise more than k locations in order to learn the secret, and corrupt at leastn � k shares in order to destroy the information. However, the adversary has the entirelife-time of the secret to mount these attacks. Gradual and instantaneous break-ins into asubset of locations over a long period of time may be feasible for the adversary. Thereforefor long-lived and sensitive secrets the protection provided by traditional secret sharing maybe insu�cient.A natural defense is to periodically refresh the secrets; however, this is not always possible.That is the case of inherently long-lived information, such as cryptographic master keys (e.g.,signature/certi�cation keys), data �les (e.g., medical records), legal documents (e.g., a willor a contract), proprietary trade-secret information (e.g., Coca-Cola's formula), and more.To realize how unsatisfactory such refreshment of the secret is, imagine that one wants toprotect a legal document by encrypting it under some initial key and then periodically changethat key, decrypting the document with the old key and encrypting it with the new one everytime the key changes. Such a solution does not protect the integrity of the document at all,and it also exposes the secrecy to the adversary that happens to attack the server at themoment when the key is changing and the document is being decrypted.Thus, what is actually required to protect the secrecy of the information is to be ableto periodically renew the shares without changing the secret, in such a way that any infor-mation learned by the adversary about individual shares becomes obsolete after the sharesare renewed. Similarly, to avoid the gradual destruction of the information by corruption ofshares it is necessary to periodically recover lost or corrupted shares without compromisingthe secrecy of the any shares.These are the core properties of proactive secret sharing as presented here. In the proac-tive approach, the lifetime of the secret is divided into periods of time (e.g., a day, one week,etc.). At the beginning of each time period the share holders engage in an interactive updateprotocol, after which they hold completely new shares of the same secret. Previous sharesbecome obsolete and should be safely erased. As a consequence, in the case of a (k + 1; n)proactive threshold scheme, the adversary trying to learn the secret is required to compro-mise k + 1 locations during a single time period, as opposed to incrementally compromisingk+1 locations over the entire secret life-time. (As an example consider a secret that lives for�ve years; a weekly refreshment of shares will reduce the time available for the adversary tobreak the k + 1 necessary locations from �ve years to one week.) Similarly, the destructionof the secret requires the adversary to corrupt n� k shares in a single time period.Note that in this setting the adversary is mobile and may break into each server multipletimes. It nevertheless cannot compromise the secret if at any time period it does not breakinto more than k locations.Our solution to the proactive secret sharing problem can support up to k = n=2 � 1corrupted parties at any time period. It assumes the existence of secure encryption andsignature functions, as well as the security of the veri�able secret sharing scheme (VSS)2
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based on homomorphic functions [11, 17]. At the system level, we assume a broadcastchannel and synchrony (as in VSS). The exact model and assumptions are described insection 2.1.The mobile adversary setting was originally presented in the context of secure systemsby Ostrovsky and Yung [18] with the focus on a theoretical setting of \general distributedfunction evaluation". That solution allowed large (polynomial) redundancy in the system(redundancy is the ratio of total servers n to the threshold k of simultaneously faulty servers),and used the availability of huge majority of honest servers to achieve the very general taskof secure computation in the information theoretic sense. That model was then used in amore practical setting by Canetti and Herzberg [3] who proactively maintained a distributedpseudorandom generator.Applications: Proactive secret sharing has numerous applications for maintaining datawhich is long-lived in scenarios where availability and secrecy are crucial. It can also be usedas a building block in \proactive function sharing" (see section 8).Organization: Section 2 presents in some detail the proactive secret sharing model, in-cluding the adversary model and the basic de�nitions of security. It also describes the basiccryptographic tools used in our solution. Section 3 describes the share renewal protocol,and Section 4 describes the share recovery protocol (proofs are omitted from this extendedabstract). Section 5 deals with secret reconstruction, and Section 6 shows how to main-tain inter-server authentication/decryption keys securely in the proactive setting. Section 7summarizes the result and section 8 discusses applications.2 Preliminaries2.1 Model and AssumptionsWe assume a system of n servers A = fP1; P2; : : : ; Png that will (proactively) share a secretvalue x through a (k + 1; n)-threshold scheme (i.e., k shares provide no information on thesecret, while k + 1 su�ce for the reconstruction of the secret). We assume that the systemis securely and properly initialized. The goal of the scheme is to prevent the adversary fromlearning the secret x, or from destroying it (In particular, any group of k + 1 non-faultyservers should be able to reconstruct the secret whenever it is necessary).Servers and Communication Model. Each server in A is connected to a commonbroadcast mediumC, called communication channel, with the property that messages sent onC instantly reach every party connected to it. We assume that the system is synchronized,i.e., the servers can access a common global clock, and that each server in A has a localsource of randomness.Time periods and update phases. Time is divided into time periods which are deter-mined by the common global clock (e.g., a day, a week, etc.). At the beginning of each time3
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period the servers engage in an interactive update protocol (also called update phase). At theend of an update phase the servers hold new shares of the secret x.The Mobile Adversary Model. The adversary can corrupt servers at any momentduring a time period. If a server is corrupted during an update phase, we consider theserver as corrupted during both periods adjacent to that update phase. We assume that theadversary corrupts no more than k out of n servers in each time period, where k must besmaller than n=2 (this guarantees the existence of k + 1 honest servers at each time).The reason behind this way of counting corrupted servers is that it is impossible or atleast very hard to analyze what happens if we di�erentiated between adversary who movesfrom one server to another during the update phase and the adversary who just stays inboth servers throughout. It is also not a realistic concern in our setting, where the updatephase is negligibly short when compared to the length of a time period: If the adversarycould move so fast that she could jump between servers during an update, if it continued tojump with the same speed during the time period, it could visit all the servers and destroythe secret sharing system. Furthermore, notice that even during a regular time period, wetreat the adversary who jumps from one server to another in the same way as if both ofthem are corrupted throughout this time period.Corrupting a server means any combination of learning the secret information in theserver, modifying its data, changing the intended behavior of the server, disconnecting it,and so on. For the sake of simplicity, we do not di�erentiate between malicious faults and\normal" server failures (e.g., crashes, power failures etc.).We also assume that the adversary is connected to the broadcast channel C, which meansshe can hear all the messages and inject her own. She cannot, however, modify messagessent to C by a server that she does not control, nor can she prevent a non-corrupted serverfrom receiving a message sent on C. Additionally, the adversary always knows the non-secretdata and the algorithm that each machine performs.We assume the adversary to be computationally bounded, so that it cannot break theunderlying cryptographic primitives on which we base our design, namely a public-key en-cryption and signature scheme, and a veri�able secret sharing mechanism { see Section 2.3.A note about the removal of an adversary from a server. We assume that theadversary intruding the servers A is \removable" (e.g., through a reboot procedure) whenit is detected. The responsibility for triggering the reboot operation (or other measures toguarantee the normal operation of a server) relies on the system management which gets inputfrom the servers in the network. In addition to regular detection mechanisms (e.g., anti-virusscanners) available to the system management, our protocols provide explicit mechanisms bywhich a majority of (honest) servers always detects and alerts about a misbehaving server.We assume for simplicity that the reboot operation is performed immediately when attacksor deviations from the protocol are detected and that it takes less time then a duration of atime period.We remark that the initialization of servers and reboot operations require a minimallevel of trust in the system management, restricted to installation of correct programs and4
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of public keys used for server-to-server communication. Speci�cally, no secret informationis exposed to the system management. This level of trust regarding integrity of installedinformation is unavoidable for the initialization of any cryptographic system. It is also worthnoticing that if the system management fails to install the communication keys properly, itcan threaten the integrity of the secret, but not its secrecy.We assume that the adversary cannot be cut from the communication channel C. How-ever, we preclude the possibility that the adversary will ood this communication channelwith messages and thus prevent servers A from communicating. Although this is an attackthat can happen in real life, there seem to be no cryptographic ways of preventing it.Erasure of past information. In our protocols we sometimes specify that the serverserase some information. This operation (performed by honest servers) is central to theproactive security setting. Not doing so would provide an adversary that attacks a serverat a given period with information from a previous period, and the later could enable theadversary to break the system. In many computer systems, what seems like a memoryupdate to the programmer, can in fact result only in an update of a cache, while the mainmemory or a copy swapped on a disk remains unchanged. It is a formal requirement of ourproactive solution that the secret sharing servers be able to reliably erase their local data.2.2 Security of a Proactive Secret Sharing SchemeWe state the security properties of our proactive secret sharing algorithm, relative to theadversary de�ned above, namely, an adversary that corrupts at most k servers in eachtime period and that is computationally limited and incapable of breaking the underlyingcryptographic primitives.We will only sketch the de�nition of security here, following the notion of semanticsecurity introduced in [12]. In the formal de�nition, to be presented in the complete versionof this paper, the adversary is modeled as a computationally bounded interactive probabilisticTuring machine which is fed with all the publicly available information on the secret (e.g., itslength, a particular subspace from which the secret is chosen, the value of the secret under aone-way function, and so on), and with the information learned by the adversary during (oneor more) runs of the update protocol (this includes all the public communication betweenservers, secret information of the servers that were corrupted in each of these periods, etc.).Let � be a function applicable to the space of secrets x. Let p(�)0 be the probabilitythat the adversary correctly computes the value �(x) when fed with the a-priori (public)information on the secret, and let p(�)1 be the analogous probability but after the adversaryis fed with the additional information gathered during the run of the protocol. (The aboveprobabilities depend on the random coins used by the adversary and the servers.) Intuitively,the function �(x) models some knowledge about x, while the di�erence p(�)1 � p(�)0 quanti�esthe amount of that knowledge \learned" by the adversary by watching the execution of theprotocol and actively intruding the servers. 5
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De�nition 2.1 (sketch) We say that a proactive secret sharing scheme is semantically secureif for any function � computable on the secret, the di�erence between the probabilities p(�)0and p(�)1 is negligible.The exact notion of \negligible" in the above de�nition depends on the exact model of theadversary. In the traditional complexity-theoretic setting of a polynomial time adversary,one considers these probabilities as functions of the secret length, and \negligible" stands forany function that decreases faster than any inverse polynomial. A more careful model wouldbound the di�erence between p(�)0 and p(�)1 as an explicit function of the (small) probabilitieswith which the adversary can break the underlying cryptographic primitives.In some cases, in order to stress the existence of an a-priori public information �(x) onthe secret x, we will say that the proactive secret sharing scheme is semantically secure relativeto �(x).Not only we are interested to preserve the secrecy of x, but also to guarantee its availabil-ity and recoverability. This means that we need to prevent the adversary from destroyingthe secret or impeding its reconstruction by, for example, destroying or modifying shares.De�nition 2.2 (sketch) A proactive secret sharing scheme that guarantees the correct re-constructibility of the secret at any time is called robust.An alternative way to think about these properties is that a proactive scheme is robust ifit is secure in the presence of up to k byzantine faults per time period. Without robustness,a scheme that preserves the secrecy of the secret would be secure in the presence of up to kgossip faults.Notice that for a proactive secret sharing scheme to be robust, one needs to ensure thatin any time period the honest servers (which could have been corrupted during previous timeperiods) have correct shares (i.e., ones that combine to the correct secret x), and that thiscorrectness can be veri�ed by the other servers. This requires that honest servers be able toverify whether each of them stores a correct share. Also, those who do hold correct sharesmust be able to cooperate in order to recover the shares of the ones that lost them (withoutexposing the recovered share to anybody except its intended holder).The focus of this paper is to construct semantically secure and robust proactive secretsharing scheme based on the existence of secure public-key encryption [12] and signatures[13], as well as on the existence of veri�able secret schemes [11, 16]. The theorems in thispaper are stated relative to these security notions and the above adversary model.2.3 Cryptographic ToolsShamir's Secret Sharing. Our secret sharing scheme is based on Shamir's scheme [19].Let q be a prime number, x 2 Zq1 be the secret to be shared, n the number of participants1In fact this can be done over any �nite �eld. 6
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(or share holding servers), and k + 1 the reconstructibility threshold. The dealer D of thesecret chooses a random polynomial f of degree k over Zq subject to the condition f(0) = x.Each share xi is computed by D as f(i) and then transmitted secretly to participant Pi (Theevaluation point i could be any publicly known value vi which uniquely corresponds to Pi; weassume vi = i as the default value). The reconstruction of the secret can be done by havingk + 1 participants providing their shares and using polynomial interpolation to compute x.Verifiable Secret Sharing { VSS. In Shamir's scheme a misbehaving dealer can dealinconsistent shares to the participants, from which they will not be able to reconstruct asecret. To prevent such malicious behavior of the dealer one needs to implement a procedureor protocol through which a consistent dealing can be veri�ed by the recipients of shares.Such a scheme is called veri�able secret sharing (VSS) [5] . Our work uses these schemesin an essential way. We implement our solution using speci�c schemes due to Feldman [11]and Pedersen [17]. These schemes are based on hard to invert homomorphic functions and,in particular, on the hardness of computing discrete logarithms over Zp, for prime p.Our solution works with either of these schemes. We choose to present here the solutionusing Feldman's scheme since it is somewhat simpler. The use of Pedersen's scheme weakensthe protection of integrity of secret x: It makes the robustness of a proactive secret sharingsystem subject to computational limits of the adversary. However, in a trade-o� for integrity,Pedersen's scheme strengthens the protection of secrecy of x: It allows us to achieve a truesemantic security, as opposed to a semantic security relative to the knowledge of gx.Feldman's VSS. For completeness we briey describe Feldman's scheme. Let p and q betwo prime numbers such that p = mq+1, where m is a small integer (possibly 2; 3; 4). Let gbe an element of Zp of order q. is that for each share xi there is a public value yi = gxi (mod p)which by the homomorphic properties of the exponentiation function (i.e., gagb = gab) allowsevery share-holder to verify that its own share is consistent with the public information.The dealer chooses the polynomial f over Zq with coe�cients f0, f1, : : :, fk and broad-casts the corresponding values gf0; gf1; : : : ; gfk. Then it secretly transmits the value xi =f(i) (mod q) to Pi. Each server Pi veri�es its own share by checking the following equation:gxi ?= (gf0)(gf1)i(gf2)i2 : : : (gfk)ik (mod p) (1)If this equation holds, Pi broadcasts a message saying that it accepts its share as proper. Ifall servers �nd their shares correct then the dealing phase is completed successfully. Indeed,by the homomorphic properties of the exponentiation function the above equation holds forall i 2 f1 : : : ng if and only if the shares were dealt correctly.If for some i, Pi �nds the above equation incorrect then Pi publishes an accusationagainst the dealer. We describe in section 3.4 how honest servers can decide whether it isthe dealer or the accuser that misbehaves. We also discuss there the issues of authenticationand encryption of the messages in the above protocol.It is worth noticing that besides allowing the veri�cation of correct dealing of shares, thepublic values gxi can be used at time of secret reconstruction to verify that the participatingshares are correct (see Section 5). 7
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Secrecy protection in VSS. The above scheme makes the value y = gx (mod p) public,where x = f(0) is the secret being shared. Therefore the semantic security of our solu-tion (when based on Feldman's scheme) can be only stated relative to the knowledge ofgx (mod p). Assuming the hardness of the discrete logarithm operation, the entire value ofx cannot be derived from y. However, there is partial information on x that can be e�-ciently derived, and that, consequently, is not protected by the scheme. Such unprotectedinformation includes the value of gx (mod p) itself, the least signi�cant bit of x, etc.However, to stress the usefulness of Feldman's VSS scheme (and ours) we outline here amethodology to apply it to a secret without leaking the partial information: The real secretto be protected, say s, is �rst encoded into a longer string x (an \envelope" for s) withthe property that given x it is easy to recover s, but given gx (mod p) it is hard to deriveany information on s (i.e., s represents the hard core information of x). This provides forsemantic security of s [12] under the assumption that the exponentiation function is hard toinvert on random input.For example, it is known ([15], see also [6]) that computing the logarithmic number ofupper bits of x from gx (mod p) is hard. Therefore, for a secret s of length log jqj, one couldconstruct the envelope x (of size jqj) as a concatenation of s (as upper most bits) and arandom string r. We refer to [1] for a general construction of practical hard core envelopesfor any one-way permutation (applicable, in particular, to the exponentiation function).Throughout the paper we refer to x as the secret. Applications in which the exposureof the secret's exponent is unacceptable should use the above envelope method. Otherapplications (e.g., proactive ElGamal signatures [14] mentioned in section 8) are secureeven with this exponent being known. The readers should also notice that this issue can becompletely avoided in our solution by replacing Feldman's VSS with the information theoreticscheme of [17].Public-key encryption and signatures. Our solution requires semantically secureencryption [12] and existentially unforgeable signatures [13]. We do not specify or assumeany particular implementation of these functions. For a pair of sender S and receiver R, wedenote by ENCR(data) the probabilistic encryption of data under R's public key; and bySIGS(data) the signature of data under S's private key.3 Periodic Share Renewal SchemeHere we present the fundamental component of our solution, namely, the protocols for peri-odic renewal of shares which preserve the secret, and at the same time make past knowledgeobsolete for the adversary.Beyond guaranteeing the secrecy of the shared secret, our scheme is robust in the senseof guaranteeing integrity and availability of the secret in the presence of up to k misbehavingservers. 8
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3.1 Initial Setting: Black-box Public Key AssumptionsCryptographic solutions in a distributed environment typically require the ability to maintainprivate and authenticated communication between the servers. This is achieved by theservers having pairs of private and public keys corresponding to public-key cryptosystemswith encryption and signature capabilities (e.g., RSA, ElGamal, etc). However, an adversarythat breaks into a server and learns its private key can then impersonate that server for thewhole life of that private key. During a break-in, the adversary could also modify the privateor public keys stored on that server, thus disabling it from communicating with others. Also,if the adversary breaks into Pi and replaces Pj's public key (in Pi's storage of other servers'public keys) with her own, she can later spook Pj to Pi. Therefore, to ensure proactivesecurity, it is necessary to maintain the system of private and public communication keysproactively, namely, to renew them periodically.We will show in section 6 how this can be done in our context (a more general treatmentof proactive authentication can be found in [4]). However, for clarity of presentation, we startby making the strong assumption that servers are equipped with a pair of private and publickeys with a property that the private key cannot be learned or modi�ed by the adversary,even if this adversary manages to break into the server (Similarly, we have to require thatduring a break-in, the attacker cannot modify the server's view of other servers' public keys).While such an intruder will be able to generate legal signatures and decrypt messages usingthe private key (as a \black-box"), it will not be able to learn the private key or modify anyof the keys. We will remove this assumption and deal with the proactive maintenance of theprivate/public communication key pairs in section 6.The security of this public key system is essential for our protocols, because all ourcommunication is implemented as an authenticated broadcast on C, i.e. every message msent by Pi will have a signature SIGi(m) attached to it. Also, whenever server Pi will needto send m \privately" to Pj, it will broadcast m0 = (i; j; ENCj(m)) (accompanied, of course,by a signature SIGi(m0)).3.2 Initialization of Secret SharingWe assume an initial stage where a secret x 2 Zq (for prime q) is encoded into n piecesx1; : : : ; xn 2 Zq using a k-threshold Shamir's secret sharing: Each Pi; i 2 f1 : : : ng holdsits share xi, where xi = f(i) for some k-degree polynomial f(�) over Zq s.t. x = f(0).We assume that this initialization has been carried out securely (For an example of securedistributed initialization of secret sharing, we refer the reader to [11] or [17]).After the initialization, at the beginning of every time period, all honest servers triggeran update phase in which the servers perform a share renewal protocol. The shares computedin period t are denoted by using the superscript (t), i.e., x(t)i ; t = 0; 1; : : :. The polynomialcorresponding to these shares is denoted f (t)(�).9
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3.3 Share renewalTo renew the shares at period t = 1; 2; : : :, we adapt a simpli�ed version of the updateprotocol presented by Ostrovsky and Yung in [18]. When the secret x is (distributively)stored as a value f (t�1)(0) = x of a k degree polynomial f (t�1)(�) in Zq, we can update thispolynomial by adding it to a k degree random polynomial �(�), where �(0) = 0, so thatf (t)(0) = f (t�1)(0) + �(0) = x + 0 = x. We can renew the shares x(t)i = f (t)(i) thanks to thelinearity of the polynomial evaluation operation:f (t)(�) f (t�1)(�) + �(�) (mod q) () 8i f (t)(i) = f (t�1)(i) + �(i) (mod q)In our system we will have �(�) = ( �1(�)+�2(�)+ : : :+�n(�) ) (mod q), where each polynomial�i(�); i 2 f1 : : : ng is of degree k and is picked independently and at random by the ithserver subject to the condition �i(0) = 0. The share renewal protocol for each server Pi; i 2f1 : : : ng, at the beginning of the time period t is as follows:1. Pi picks k random numbers f�imgm2f1:::kg from Zq. These numbers de�ne a polynomial�i(z) = �i1z1+�i2z2+: : :+�ikzk in Zq, whose free coe�cient is zero and hence, �i(0) = 0.2. For all other servers Pj ,Pi secretly sends uij = �i(j) (mod q) to Pj.3. After decrypting uji, 8j 2 f1 : : : ng, Pi computes its new share x(t)i  x(t�1)i + ( u1i +u2i+ : : :+ uni ) (mod q) and erases all the variables it used except of its current secretkey x(t)i .This protocol solves the share renewal problem against a (\passive") adversary that maylearn the secret information available to corrupted servers but where all servers follow thepredetermined protocol. This is proven in the next theorem. (A solution against \activecheaters", i.e. in the presence of byzantine faults, is presented in section 3.4). Notice that weassume in step 2 that the shares are transmitted to the corresponding holders with perfectsecrecy. Equivalently, we can specify that every uji are broadcasted to Pi on C in encryptedform (i.e. as ENCi(uji)), where encryption operation ENCi(�) is a black-box encryption,giving perfect secrecy to those that don't know the secret key of Pi. This allows us toprove the information-theoretic secrecy of this scheme. In the next sections we use explicitencryption for the transmission of these shares and then the secrecy of the scheme is reducedto the strength of the encryption.Theorem 3.1 If all servers follow the above share renewal protocol then:Robustness: The new shares computed at the end of the update phase correspond to the secretx (i.e., any subset of k + 1 of the new shares interpolate to the secret x).Secrecy: An adversary that at any time period knows no more than k shares learns nothingabout the secret. 10
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Proof: We proceed by an inductive argument: Assume that at initialization the sharescorrespond to the secret x according to Shamir's scheme. Furthermore, assume that at eachtime period r = 1; 2; ::; t� 1 the theorem holds. In particular it means that after the updatephase of time period t � 1, the shares correspond to the secret and that the adversary haslearned nothing about the secret. We prove that this condition is preserved during timeperiod t:Correctness: Let S be a set of k + 1 shares resultant from the t-th update period. Forsimplicity of notation, assume S = fx(t)1 ; x(t)2 ; : : : ; x(t)k+1g. Let a1; a2; : : : ; ak+1 be the interpo-lation coe�cients such that Pk+1i=1 aix(t)i would recover the secret using Shamir's scheme (thecoe�cients ai depend on the particular indices of shares in the set S). We have:k+1Xi=1 aix(t)i = k+1Xi=1 ai0@x(t�1)i + nXj=1 �j(i)1A (by step 3 of the protocol)= k+1Xi=1 aix(t�1)i + nXj=1 k+1Xi=1 ai�j(i)= x+ nXj=1 �j(0) (by interpolation)= x (because 8j; �j(0) = 0)Secrecy: Let A be an eavesdropping adversary. Let K1 be the set of k1 servers that Aeavesdropped into in period t� 1 but not in period t; let K2 be the set of k2 servers that Aeavesdropped into both in period t�1 and in period t (we may assume that A eavesdroppedinto these servers during the update phase); and, let K3 be the set of k3 servers that A thateavesdropped into in period t but not in period t�1. By our assumption on the adversary, ehave k1+ k2 � k and k2+ k3 � k. We will assume a clear worst case when k1 = k3 = k� k2.We also denote by S1 and S2 the set of shares in period t � 1 corresponding to the serversin K1 and K2, respectively; and by S 02 and S3 the set of shares in period t corresponding tothe servers in K2 and K3, respectively.We now show that the availability of all this information about shares and updates doesnot provide information about x.Notice that since we assume that k shares from period t � 1 are known, then �xingthe secret x determines the interpolation polynomial f (t�1) corresponding to period t � 1.Similarly, from the k known shares of period t, �xing x determines the polynomial f (t). Byconstruction these polynomials are consistent with the available information from the setof shares S1; S2; S 02 and S3. On the other hand, the di�erence between these polynomialsrepresent a k-degree polynomial with free coe�cient zero and its evaluation on the points11
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corresponding to the servers in K2 is consistent with the new shares available to the ad-versary. (They are consistent also with the value of the partial shares corresponding to thepolynomials �i(z) which are randomly chosen conditioned only to �i(0) = 0).Since the above argument holds for any value of x, then all possible values of x areconsistent with the available information. On the other hand, there is no degree of freedombeyond x (i.e., x and the known shares determine all the additional shares), and hence thedistribution on x conditioned on the information available to A is uniform. In other words,no information on x is revealed.3.4 Share Renewal Protocol in the Presence of Active AttackersIn the above basic share renewal protocol an active adversary controlling a server can causethe destruction of the secret by dealing inconsistent share updates or just by choosing apolynomial �i with �i(0) 6= 0. In order to assure the detection of wrongly dealt shares we addto the above basic protocol a veri�ability feature. Namely, we adapt to our scenario Feldman'sveri�able secret sharing scheme as described in section 2.3. In traditional applications ofveri�able secret sharing, the fact that all the share-holders �nd their shares to be consistentis used as a proof for a correct dealing of the secret. In our case, this is used as a proof forcorrect dealing of update shares by the servers.The veri�able share renewal protocol for each server Pi at period t is as follows:1. Pi picks k random numbers f�imgm2f1:::kg from Zq to de�ne the polynomial �i(z) =�i1z1 + �i2z2 + : : :+ �ikzk. It also computes values �im = g�im (mod p), m 2 f1 : : : kg.2. Pi computes uij = �i(j) (mod q), j 2 f1 : : : ng, and eij = ENCj(uij), 8j 6= i.3. Pi broadcast the message V SS(t)i = (i; t; f�imgm2f1:::kg; feijgj2f1:::ngnfig), and the signa-ture SIGi(V SS(t)i ).4. For all messages broadcasted in the previous step by other servers, Pi decrypts theshares intended for Pi (i.e., computes uji out of eji, 8j 6= i), and veri�es the correctnessof shares using the equivalent of the veri�ability equation 1 from section 2.3, namely,for all j 6= i it veri�es: guji ?= (�j1)i(�j2)i2 : : : (�jk)ik (mod p): (2)(Notice that this equation accounts for the condition �j(0) = 0.)5. If Pi �nds all the messages sent in the previous step by other servers to be correct (e.g.,all have correct signatures, time period numbers, etc.), and all the above equations tohold, then it broadcasts a signed acceptance message announcing that all checks weresuccessful. 12
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6. If all servers sent acceptance messages then Pi proceeds to update its own share byperforming: x(t)i  x(t�1)i + ( u1i+ u2i+ : : :+ uni ) (mod q) and erases all the variablesit used except for its current share x(t)i .7. If in the above step 5, Pi �nds any irregularities in the behavior of other servers duringstep 4 then it broadcasts a signed accusation against the misbehaving server(s). Whento send accusations, and how to resolve them is discussed in the next subsection.3.5 Resolving accusationsIn step 5 of the above protocol, each server checks the correct behavior and dealing of otherservers. If a misbehaving server is found then there are two kinds of actions to take. Oneis not to use the polynomial �i(�) dealt by this server in the renewal of shares in step 6.The second is to alert the system management so that it could take measures to rectify themisbehaving server (e.g., it may be required to reboot the server in order to \expel" theadversary). However, an accusation against a server by another server requires veri�cation,since a misbehaving server could falsely accuse others. For a consistent update of shares,the honest servers need to agree on who the \bad" servers are. We explain below how eachserver Pi decides on its list Bi of bad processors.We say that a message from server Pi at period t is correct if it complies with thespeci�cations of the above protocol, including all the speci�ed �elds and information (e.g.,the correct time period number) as well as a correct signature.We distinguish between three classes of irregularities in the protocol:1. Formally incorrect messages: wrong time periods, numbers out of bounds etc.2. Two or more correct yet di�erent messages from the same server (i.e. containing avalid signature), or no message at all from some server3. A mismatch in equation 2.Notice that irregularities of the �rst two types are discovered using public informationonly, and therefore, all (honest) servers can always detect them and mark the correspondingservers as \bad". The faults of the third kind cause a problem, since they are discoveredonly locally by a server that receives a share causing a mismatch in equation 2.When server Pi �nds that equation 2 corresponding to the information sent by Pj doesnot hold, it has to broadcast an accusation against Pj. The servers must then decide whetherit is Pi or Pj who is cheating. A way to do this is by having Pj publicly \defend" itself: If Pjsent a correct uji, namely, one that passes equation 2, then it can expose this value and provethat it corresponds to the publicly available encryption value eji which was broadcasted byPj in step 3. To prove this Pj may need to reveal additional information used to computethe encryption (like the random vector used in probabilistic encryption). However, Pj does13
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not need to reveal any private information of itself. Then everybody can check whether theuji and the additional information published by Pj encrypts under Pi's public key to eji asbroadcasted by Pj in step 3. Second, everybody can check whether this uji matches equation2. If Pj defends itself correctly then all servers mark Pi as bad, otherwise Pj is marked asbad. Notice that in some encryption schemes (like RSA), the information published by theaccuser is su�cient for public veri�cation, which simpli�es the above general protocol.Once all accusations are resolved, every honest server Pi holds the same list of bad serversBi (i.e., for each pair (Pi; Pj) of non-faulty servers, Bi = Bj). Now the computation of thenew shares is done by replacing step 6 of the share renewal protocol by:x(t)i  x(t�1)i + Xj =2Bi uji (mod q)3.6 Security PropertiesIn Theorem 3.1 we dealt with the share renewal assuming the servers are curious but hon-est. Here we claim the analogous result for the case that up to k servers are arbitrarilymisbehaving in the renewal protocol.Theorem 3.2 If the adversary controls up to k servers during the protocol, then:Robustness: The new shares computed at the end of the update phase by honest serverscorrespond to the secret x.Secrecy: The above secret sharing scheme is semantically secure. 24 Share Recovery SchemeIn a proactive secret sharing system, participating servers must be able to make sure whethershares of other participating servers have not been corrupted (or lost), and restore the correctshare if necessary. Otherwise, an adversary could cause the loss of the secret by graduallydestroying n � k shares. In this section we present the necessary mechanisms for detectionand recovery of corrupted shares.The share x(t)i held by processor Pi in period t is called correct if x(t)i = f (t)(i) (mod q),where f (t) is the current secret sharing polynomial. Otherwise, we say that the share isincorrect. A server can have an incorrect share because it was controlled by the adversaryduring the share renewal protocol (and hence it was prevented to update its share correctly),or because the adversary attacked the server after the update phase and modi�ed the server's2In the protocol above we achieve semantic security relative to the a priori knowledge of the exponentgx (mod p) of the secret x. This extra knowledge is avoided by using Pedersen's V SS scheme [17] (seediscussion on Feldman's V SS in section 2.3). 14
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secret share. A secret share can also be lost because a server was rebooted or replaced by anew server.Without share recovery, the proactive scheme would not be secure even against adver-saries who can change the local state of the servers they attacked, or in general, in any waydisable the attacked server from performing the right protocol (by, for example, disconnect-ing it from the network). In particular, without this mechanism the scheme is insecure inthe presence of hardware failures, crashes of the operating system etc. Also, in a practicalsystem, every server whose misbehavior is detected by others will be rebooted, and its sharewill be lost because of the reboot procedure.4.1 Detection of Corrupted SharesHow are corrupted shares detected? In some cases it is easy to detect that a server requiresto recover its correct share. This is the case of servers that do not participate in an updatephase (e.g., due to a crash), or servers that misbehave during that phase. However, if theshare of some server is (\silently") modi�ed by the adversary (e.g., after an update phase)then this modi�cation may go undetected. Hence, in the spirit of proactiveness, the systemmust periodically test the correctness of the local states of the participating servers, detectingin this way lost or modi�ed shares.To implement the distributed veri�ability of shares, we add an invariant that in eachtime period t, each server Pi stores a set fy(t)j gj2f1:::ng of exponents y(t)j = gx(t)j (mod p) ofcurrent shares of all servers in A. This invariant will also provide robustness in the secretreconstruction protocol (see section 5).The invariant is achieved as follows:� First, we augment section 3.2 with the requisite that each server stores the valuesy(0)j corresponding to the initial shares x(0)j ; j 2 f1 : : : ng (this can be achieved byperforming Feldman's V SS at initialization).� Second, using the homomorphism of the exponentiation function, we supplement step6 of the update protocol in section 3.4 so that each server Pi updates its set fyjgj2f1:::ngby computing for every j:y(t)j  y(t�1)j � (gu1j � gu2j � � � � � gunj) (mod p)In the general case, the above product is computed using only update shares corre-sponding to servers that did not misbehave in the update phase, i.e:y(t)j  y(t�1)j � Ya62Bi guaj (mod p)Also, notice that although the servers in protocol 3.4 do not know update shares uajof other servers, they can compute their exponents from the information broadcasted15
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publicly using the equation 2, by computing:guaj  Ym2f1:::kg(�am)jm (mod p)Lost Share Detection Protocol. We extend the update phase between time periodsto include a share recovery protocol executed before the share renewal protocol. Its �rstpart is the lost share detection protocol which works as follows: Every server checks whetherits share x(t)i corresponds to the y(t)i it stores, i.e. whether gxi ?= yi (mod p). If not, itbroadcasts a singed request saying that it needs a share recovery. Otherwise, if its xi andyi are consistent, Pi broadcasts the values fy(t)j gj2f1:::ng it stores, together with a propersignature. After collecting these messages from all servers and checking their signatures,each server decides by majority on the current proper set fy(t)j gj2f1:::ng (correcting its ownset if necessary). Now each server Pi can decide on a set Bi of servers which presented anincorrect (i.e., di�erent from majority) exponent of their own share. These are the serversthat Pi believes to need a share recovery, in addition to servers that broadcasted an explicitrequest to have their shares recovered (In particular, it can be the case that for some i,Pi 2 Bi, which means that server Pi decided that its own share is not correct). It is clearthat every pair of non-faulty servers (Pi; Pj) has the same view about who has an incorrectshare, i.e., Bi = Bj = B. From our assumptions about the adversary, there are no morethan k servers holding a wrong share at the end of each time period, i.e. jBj � k.4.2 Basic Share Recovery ProtocolThe share recovery algorithm is based on the fact that in Shamir's (k+1; n)-threshold scheme,any group D � A of d shares (k+1 � d � n� 1) can be thought of as a (k+1; d)-thresholdsecret sharing of any of the remaining shares xr; r 62 D.A straightforward way to reconstruct the shares xr = f (t)(r) for r 2 B, is to let eachserver in D = A n B send its own share to Pr, which would allow Pr to recover the wholepolynomial f (t)(�) and f (t)(r) in particular. However, this would also expose the secret xto Pr. Instead, for each r 2 B, the servers in D will collectively generate a random secretsharing of xr in a way analogous to that used to re-randomize the secret sharing of themain secret x in the share renewal protocol: Every server Pi in D deals a random k-degreepolynomial �i(�), such that �i(r) = 0 (mod q). By adding �i(�)'s to f (t)(�), a new, randomsecret sharing fx0igi2D of xr is obtained. The servers can now send these new shares to Pr, toallow it to compute xr without letting Pr learn anything about the original shares fxigi2D.Also, any coalition of k or less servers, not including Pr, will learn nothing about the valueof xr.We �rst present the share recovery protocol stripped of veri�ability. It is secure onlyagainst an adversary that eavesdrops into k or less servers, but can not change the behaviorof the servers. For each Pr that requires share recovery, the following protocol is performed:16
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1. Each Pi; i 2 D, picks a random k-degree polynomial �i(�) over Zq such that �i(r) = 0, i.e.it picks random coe�cients f�ijgj2f1:::kg � Zq and then computes �i0 = �Pj2f1:::kg �ijrj(mod q).2. Each Pi; i 2 D, broadcasts fENCj(�i(j))gj2D.3. Each Pi; i 2 D, creates its new share of xr, x0i = xi +Pj2D �j(i) and sends it to Pr bybroadcasting ENCr(x0i).4. Pr decrypts these shares and interpolates them to recover xr.4.3 Full Share Recovery ProtocolIn the general case, the adversary not only can eavesdrop into the servers but also cause thecorrupted servers to deviate from their intended protocol. To cope with these cases, we addto the above protocol (section 4.2) the necessary \veri�ability" properties for the dealing ofpolynomials �i(�) in step 2 and for reconstruction of xr from xi's in step 3 and 4:1. Each Pi; i 2 D picks a random k-degree polynomial �i(�) 2 Zq[z] such that �i(r) = 0,i.e., it picks random coe�cients f�ijgj2f1:::kg � Zq and then computes�i0 = �Pj2f1:::kg �ijrj (mod q).2. Each Pi veri�ably secret-shares its polynomial �i(�) among the set D using the samemechanism as in the share renewal protocol, i.e., by broadcastingV SSi = (i; fg�im (mod p)gm2f0:::kg; fENCj(�i(j))gj2D), together with SIGi(V SSi).3. For all servers Pi; Pj in D, Pj checks Pi by locally verifying whether �i(r) = 0 (mod q):Ym2f0:::kg(g�im)rm ?= 1 (mod p) (3)and whether �i(j) is consistent with exponents of the coe�cients of �i(�):g�i(j) ?= Ym2f0:::kg(g�im)jm (mod p) (4)4. Depending on the above veri�cation the servers broadcast acknowledgments (if bothequations agree) or start accusation protocols (if equation 4 does not hold). By publicresolution of the accusations, each server inD and the server Pr decide on set D0 � D ofservers that properly constructed and distributed their re-randomization polynomials�i(�). As in the share-renewal protocol, all honest servers (including the recoveringserver Pr) will arrive at the same set D0.5. Each server Pi; i 2 D0 creates its new share of xr, x0i = xi +Pj2D0 �j(i) and sends itencrypted and signed to Pr by broadcasting RECi = (i; ENCr(x0i)) and SIGi(RECi)on the communication channel. 17
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6. Pr decrypts all the xi's and takes the exponents fg�jm (mod p)gj2D0;m2f0:::kg that werebroadcasted in step (2). Then, for all i 2 D0, Pr takes the current valid exponent yi ofPi's share (Pr knows it from the lost share detection protocol) and veri�es whether:gx0i ?= yi � Yj2D0 g�j(i) = gxi+Pj2D0 �j(i) (mod p) (5)where for all j 2 D0: g�j(i)  Ym2f0:::kg(g�jm)(im) (mod p)7. In this way Pr arrives at a set D00 � D0 of servers that during step (5) broadcastedcorrect new shares x0i. Now Pr can interpolate these shares to recover xr, because fromour assumptions on the adversary, jD00j � k + 1We sketch the properties of this protocol in the following theorem:Theorem 4.1 If the adversary compromises no more than k servers in any time period,then the full share recovery protocol has the following two properties:Robustness: Each recovering server that follows the protocol recovers its correct share xr =f (t)(r) (mod q).Secrecy: The semantic security of the secret x is preserved.Multi-Secret Sharing. Theoretically, instead of recovering each lost share separately bytreating the set fxigi2D as a secret sharing of a single xr for each r 2 B, we can treat it asa multi-secret sharing (introduced in [20]) of all fxrgr2B. The servers D can recover sharesfxrgr2B simultaneously, by adding random k-degree polynomials �i(�) such that �i(r) = 0for all r 2 B to their shares and then sending the new shares to servers B to let themreconstruct their original shares. Even though this \simultaneous" solution allows serversB to learn each other's shares fxrgr2B, this scheme will be secure against the adversary wespeci�ed in section 2.1: Since we do not distinguish between an adversary that destroys theshare and the adversary that learns it, if the servers B need a share recovery, we can assumetheir shares are known to the adversary already.However, in practice, such a solution obviously weakens the security of the system: Eventhough we do not specify it formally, our proposed solution is secure if in every time periodan adversary manages to destroy the shares of k servers without learning them (e.g. bycrashing the servers) and simultaneously manages to learn k other shares (e.g. by injectingmemory-scanning viruses into the servers that store them).
18
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5 Secret ReconstructionIn the above section we have shown how to renew shares consistent with the secret, andpreserve their integrity such that at any time any k+1 parties could reconstruct the secret ifdesired. However, the participants in the actual reconstruction protocol (namely, polynomialinterpolation as in Shamir's scheme) must be able to detect servers that provide incorrectshares to the reconstruction. This detection is easily accomplished by veri�cation of thesubmitted shares against values y(t)i held by each server (because majority of servers storesthe same correct set fy(t)i gi2f1:::ng).6 Dynamically Secure Private KeysIn the above presentation we have assumed for simplicity that the servers are equipped withideally protected private / public key pairs used for authentication and encryption of server-to-server communication (see section 3.1). We now show how to remove this protected keyassumption. We extend the update phase between time periods to include a third component,the private key renewal protocol, which will be triggered before share recovery and sharerenewal. As a result of the private key renewal, an adversary that breaks into a server inperiod t, but which does not control the server at period t+1, cannot learn this server's newkey.The private key renewal protocol at the beginning of each update phase works as follows:Each server Pi chooses a new pair of private and public keys a(t)i ; b(t)i and broadcasts thenew public key b(t)i authenticated by its signature using its previous private key a(t�1)i . Theother servers can verify this signature, using b(t�1)i from the previous time period. Clearly,an adversary that controlled the server at time period t � 1, or before, but not during theupdate phase between periods t � 1 and t, cannot learn the new private key chosen bythe server. However, if the adversary knows a(t�1)i then, even if she is not controlling Piduring the private key renewal protocol of period t, she can choose her own private key andinject its public counterpart into the broadcast channel, authenticated as if it originatedfrom Pi. But since Pi is not actively controlled by the adversary anymore, it will send itsown authenticated public key to the communication channel as well. This will result in twodi�erent messages legally authenticated as coming from Pi, which will constitute a publicproof of Pi's compromise and must trigger a reboot procedure.When a server is rebooted, it internally chooses its new private key, publishing only thecorresponding public key, which must be then installed on all servers in A. At the sametime, public keys fa(t)i g of other servers must be installed on the rebooted server. Notice thatinstalling these public authentication keys requires the same degree of trust in the systemmanagement as during the initialization of the system.
19
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7 Proactive Secret Sharing: the Combined ProtocolCombining all the above pieces we get our full protocol for proactive secret sharing: At thebeginning of every time period, the update phase is trigerred, which consist of three stages:1. the private key renewal protocol2. the share recovery protocol (including lost share detection)3. the share renewal protocol.The following theorem summarizes our main result:Theorem 7.1 If there are no more than k corrupted servers in each period (where serverscompromised during an update phase are considered as compromised in both adjacent peri-ods), then the above protocol constitutes a secure and robust proactive secret sharing scheme.8 ApplicationsProactive secret sharing protocol o�ers a way of maintaining sensitive information thatprovides a novel degree of protecting secrecy and integrity.Instead of direct proactive secret sharing, one could protect the sensitive data by storingit encrypted on multiple servers and proactively secret sharing only the decryption key. Toprovide integrity, the servers storing the ciphertext of the data would have to periodicallyperform a corruption detection protocol that would be very similar to the lost share detectionprotocol: The servers would compare the hashes of their ciphertexts and decide by majorityon the correct version. Since the ciphertext itself is not secret, the servers that have a correctversion would just send it to those that lost it.New important applications of proactive secret sharing are possible when it is extended toproactive function sharing (see our forthcoming paper [14]). The idea is that the (proactivelymaintained) shares are never combined to reconstruct a single secret, but can be insteadrepeatedly used to collectively compute on any given input a function de�ned by this sharedsecret. 3 (This follows the function sharing model of [7] based on threshold encryption[8]). Proactive sharing of the decryption function could be employed to maintain securedatabases.A particularly attractive application (presented in [14]) of proactive function sharingprovides proactive digital signatures which achieve the bene�ts of threshold signatures, withthe additional property that the scheme is broken only if the adversary corrupts more thana threshold of the servers in a single time-period. For signature keys (e.g., a certi�cationauthority) that live for long time and require very strong security, this solution is of particularimportance.3For example, number e can de�ne an exponentiation function f : Zp ! Zp; f(x) = xe (mod p)20
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